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Lecture 20:

« Exponential Distribution
* Poisson Process

* Poisson (Discrete) Distribution
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Exponential Distribution as Limit of Geometric
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Exponential Distribution as Limit of Geometric

Probability Distribution for Exp(0.7)
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Review: Exponential Function

Since both of the continuous distributions we study (Normal and Exponential)
use exponentials, let’s think about this a bit....

Here is a graph of the exponential function eX, where e =2.71828... (Euler’s
Constant):

Plot of f(x) = e*




Exponential Function

Here is a graph of e, which flips the function around the Y axis:

Plot of f(x) = e~
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Exponential Function

Here is a graph of e, which flips the function around the Y axis:

Plot of f(x) = e~
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Exponential Distribution

This is called the Exponential Distribution, and along with the Normal, is one
of the most important continuous distributions in probability and statistics.

Formally, then, we say thatY is distributed according to the Exponential
Distribution with rate parameter A, denoted

Y ~ Exp(4)

lf Probability Distribution for Exp(0.7)

P {ﬂe"” if >0

0 if t<O0
l—e™ ift>0
F@) =
0 if t<0

1 1
and where EX) = 7 and Var(X) = 7



Exponential Distribution

Geometrical Distribution: Geometric(p)

Exponential Distribution: Exp(A) s
Motivation: This counts the number of Bernoulli trials until the first success occurs.
Motivation: If we have a process in which events arrive (hence, ¢ - o
. . . . . 24 It can be viewed as a countable sequence of i.i.d. Bemoulli trials:
the Exponential characterizes the inter-arrival time, e.g., "how lon
Xy, X5, Xy, ...
Definition: X ~ Exp(}) if
where we return the smallest index i for which X; = 1.
Rng(X) = [0, c0) Definition: X ~ Geometric(p) if
f{) = 4e™*!
F(t)=10- e* Ry=1{1,2,...)
Py(k)=(1-p)*'p
E(X) = i Useful Formulae:
A
1
Var(X) = 3 Ex) =1
A° p
| P
it Var(X) = —; £
X1 =2~ p°
P(X<t)=10- e*
P(X > k)= (1 - p)*

where e = 2.71828183 ... (Euler's constant). PX<k)=10-(-p"



Exponential Distribution: The Memoryless
Property

Probability Distribution for Exp(0.1)
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Poisson Process

The Poisson Process concept captures an important way of thinking about

events randomly occurring through time (or space)... Two things to remember
are

o Events are discrete (they happen or they don’t — you can think of it as a
Bernoulli trial with an outcome of success or failure), but

o Time and space are continuous..... the random behavior here is the time of an
event.

When an event has happened we say it has arrived. You can think of this as a
sequence of real numbers giving the arrival time of an event:

Arrival Times= {0.4324..., 0.734,1.389..., 1.453...,2.1546..., ... }

S I R Y N S
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Time t in seconds/days/years/whatever



Poisson Process !

0

Examples in the time domain:

o Sneezes in a classroom

o Alpha particles emitted from U 238

o Email arriving in my inbox

o Accidents at an intersection

o Earthquakes, volcanoes, asteroids, ...

Yellowstone volcano eruption:
NASA to SAVE the world from
supervolcano erupting

NASA scientists are creating an ambitious plan to prevent an explosion of a Yellowstone
volcano that could even end human life by drilling a hole.

. e )

THE REALLY BIG ONE

An earthquake will destroy a sizable portion of the coastal Northwest. The question is

when.

0000

By Kathryn Schulz

hen the 2011 earthquake and tsunami

struck Tohoku, Japan, Chris
Goldfinger was two hundred miles away, in
the city of Kashiwa, at an international
meeting on seismology. As the shaking
started, everyone in the room began to laugh.
Earthquakes are common in Japan—that one
was the third of the week—and the
participants were, after all, at a seismology
conference. Then everyone in the room
checked the time.

Seismologists know that how long an

earthquake lasts is a decent proxy for its
FOSURRNTRUR. ‘PSR W - . IRY. 7. - T« WONIPS, KU ST, S——

The next full-margin rupture of
the Cascadia subduction zone will

spell the worst natural disaster in
the history of the continent.

What if an asteroid hit the Earth?
BY MARSHALL BRAIN ° o @ 9

UP NEXT »

An asteroid striking our planet - it's the stuff of science fiction. Many
movies and books have portrayed this possibilty ("Deep Impact,”
"Armageddon," "Lucifer's Hammer," and so on).

An asteroid impact is also the stuff of science fact. There are obvious
craters on Earth (and the moon) that show us a long history of large
objects hitting the planet. The most famous asteroid ever is the one
that hit Earth 65 million years ago. It's thought that this asteroid threw
s0 much moisture and dust in to the atmosphere that it cut off

An illustration of an asteroid on its way

to Earth. See more space dust images. sunlight, lowering temperatures worldwide and causing the extinction
PHOTOGRAPHER: ANDREUS AGENCY: of the dinosaurs.
DREAMSTIME.COM

Every year The Federal Highway ini ion reports i 2.5 Million
intersection accidents. Most of these crashes involve left turns.




Poisson Process

We know that the
We can motivate the way a Poisson process is formally probability that a
defined by considering what happens when we randomly particular arrival
generate arrivals in a unit interval. Suppose each trial of occurts in the
the experiment we generate 5 random numbers in the interval [0.0 .. 0.1) is
interval [0..1): 1/10; for [0.2 .. 0.5)
is 0.3, and for any
interval [a..b) it is
2? } : : —t { (b_a).
o2 The probability for
I — 1 . ] any one arrival is
al ~ . j equal to the length
® of the interval.
} J. ——t 4 This is because the
2L | | | | | arrivals are
T ) ) ) ) ) randomly and
af — o | uniformly
o il s ! distributed in the

interval [0..1).



Poisson Process

Now suppose we generate 5 random arrivals in

[0..1), 10 random arrivals in [0 .. 2), 15 arrivals in

[0..3), 20in [0 .. 4) and so on, to infinity....
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Since the arrivals are
independent and distributed
uniformly, the mean number of
arrivals in each unit interval
[0..1),[1..2),][2..3), etc. is still
5.

Also, as the sequence gets
longer, the relationship between
each interval becomes less and
less dependent... in the limit,
each interval's results are
independent of every other.
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Poisson Process

Formally, we have the following definition: suppose we have discrete events

occurring through time as just described, and let us define a Counting Random

Variable
N[s..t] = the number of events arriving in the time interval [s. . 7]

such that
1) The expected value of NJs..t]:

a) is a fixed constant A over any unit interval anywhere in the
sequence, and

b) is proportional to the length (t — s) of the interval; in particular, for
any two non-overlapping intervals of the same length, the expected
number of occurrences in each is the same;

2) The number of arrivals in two non-overlapping intervals is independent;
and

3) The probability of two events occurring at the same time is 0.

Then this random process is said to be a Poisson Process.

R O O N Y R
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Poisson Process | | | |

It is also possible that the continuous dimension is distance in space, in 1
dimension or more than 1. Examples include:

The occurrence of leaks in an Location of treesin a 1
undersea pipeline (1D): square mile plot of land:

02 . o®

Location of supernovas
in a given cubic
gigaparsec volume of
space in the last billion
years:

075

100 -1.00

The important point is that events (discrete) occur along 1 or more (continuous) dimensions.



Poisson Random Variables (Discrete)

Suppose we have a Poisson Process and we fix the unit time interval we consider
(say, 1 second or 1 year, etc.), where the mean number of arrivals in a unit

interval is 4, and then each time we “poke” the random variable X we return
NJ0..1), N[1..2), N[2..3), etc.

Then we call X a Poisson Random Variable with rate parameter 4, denoted

X ~ Poi(A)
where

Ry = {0,1,2,3,...}

Probability Distribution for Poi(3)

etk
k!

Jx(k) = Poi(3)

E(X) = Var(X) = 1




P(X=k)

I S | .

Poisson Random Variables (') . | |

1 2 3
Examples
Assume that arrivals of email in my Inbox are a Poisson Process with rate A =10

messages per hour. Then X ~ Poi(10) returns the random number of emails
which arrive within any particular hour.

What is the probability that I get no emails in the next hour?

¢—10 40
0!

Probability Distribution for Poi(10)

P(X =0) = fx(0) = = e 1% = 454%107°

012
010

X ~ Poi(10)

Ry = {0,1,2,3,...}

0.04

0.02 l

0.00 -

e—lO 10k

PX =k =fxk) = —
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P(X=k)
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1 2 3
Examples
Assume that arrivals of email in my Inbox are a Poisson Process with rate A =10

messages per hour. Then X ~ Poi(10) returns the random number of emails
which arrive within any particular hour.

What is the probability that I get exactly 10 emails in the next hour?

6_10/110

10!

| Probability Distribution for Poi(10)
v

P(X = 10) = fx(10) = = 0.1251

012
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X ~ Poi(10)

Ry = {0,1,2,3,...}

0.04

e 1010%
k!

PX =k) = fx(k) =
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P(X=k)
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Examples

Unfortunately there is no way to compute the CDF or ranges except by simply
adding together all the individual values.

What is the probability that I get between 5 and 15 emails (inclusive) emails in
the next hour™

D 1010k
PG5 <X<15) = Z — = 0.922
k=5 !

Probability Distribution for Poi(10)
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X ~ Poi(10)
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Optional: The Waiting Time Paradox:

= https://jakevdp.github.io/blog/2018/09/13 /waiting-time-paradox/



Recall: Poisson Random Variables

Suppose we have a Poisson Process and we fix the unit time interval we consider
(say, 1 second or 1 year, etc.), where the mean number of arrivals in a unit

interval is 4, and then each time we “poke” the random variable X we return
N[0..1], N[1..2], N[2..3], etc.

Then we call X a Poisson Random Variable with rate parameter 4, denoted

X ~ Poi(4)

where

Probability Distribution for Poi(3)

Ry = {0,1,2,3,...}

ek
k! -

fx(k) =




Interarrival Times of a Poisson Process

Suppose we have a Poisson Process, and instead of counting the number of
arrivals in each unit interval, we look at the interarrival times, i.e., the amount
of time between each arrival.

Intuitively, this is a natural thing to think about: How long before the next
event?

Y 1.

»lg
»

A\ 4
A

Let’s define the random variable Y = “the arrival time of the first event.”



Interarrival Times of a Poisson Process

Suppose we have a Poisson Process, and instead of counting the number of
arrivals in each unit interval, we look at the interarrival times, i.e., the amount
of time between each arrival.

Intuitively, this is a natural thing to think about: How long before the next
event?
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Let’s define the random variable Y = “the arrival time of the first event.”

In fact, because the arrivals are independent, at any time t, probabilistically
the Poisson process starts all over again (the events don’t remember the past!),
so in fact:

Y = “the interarrival time between any two events”

Now the question is: What is the distribution of Y?



Interarrival Times of a Poisson Process
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What is the distribution of Y? Since

A = E(NI[O0..1])
and the number of arrivals in an interval is proportional to its length, that is,
E(N[0..2] ) =2*E(NJ0..1]), etc., then A-¢t = E(NJ[O0..1])
and so the probability that there are exactly n arrivals by time t is

e (At)"

P(N[0..f] =n) = Y

and
—At 10
e ' (Ar) _ gh

P(Y>t) = P(N[0..1]] =0) = 0!

P(Y<t)=1-¢*



Interarrival Times of a Poisson Process = Exponential Random Variable

Y L

|

|
1 2 3
What is the distribution of Y?
P(Y<t)=1—-¢"

Now, this is the CDF of the Exponential:

l—e™ ift>0
F() =
0 if r<0

and so if we take the derivative (0 - (=1)e™ = le™¥
Exponential:

Je ™ ifr>0

f@ =F'@) = { ,
0 ift<0

1,

Recall the derivative
of exponential:
d e cXxX

dx
and the chain rule:

hx) = f(g())
H) = f(gx)- &

= Cecx

we get the PDF of the



