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Lecture 20:
• Exponential Distribution

• Poisson Process

• Poisson (Discrete) Distribution
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Review: Exponential Function

Since both of the continuous distributions we study (Normal and Exponential) 
use exponentials, let’s think about this a bit....

Here is a graph of the exponential function ex, where e = 2.71828... (Euler’s 
Constant):
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Here is a graph of e-x, which flips the function around the Y axis:

Exponential Function
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Here is a graph of e-x, which flips the function around the Y axis:

Exponential Function

We will only use 
values  x >  0:



This is called the Exponential Distribution, and along with the Normal, is one 
of the most important continuous distributions in probability and statistics. 

Formally, then,  we say that Y is distributed according to the Exponential 
Distribution with rate parameter 𝜆, denoted

if

and where                             and

Exponential Distribution



Exponential Distribution



Exponential Distribution: The Memoryless 
Property 
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The exponential, like the geometric, 
has the memoryless property, 

and the proof  is the same!



Poisson Process
The Poisson Process concept captures an important way of thinking about 
events randomly occurring through time (or space)...  Two things to remember 
are 

o Events are discrete (they happen or they don’t – you can think of it as a 
Bernoulli trial with an outcome of success or failure),  but 

o Time and space are continuous..... the random behavior here is the time of an 
event. 

When an event has happened we say it has arrived. You can think of this as a 
sequence of real numbers giving the arrival time of an event:

Arrival Times = { 0.4324... ,  0.734 , 1.389... , 1.453... , 2.1546... ,   ...    }

Time t in seconds/days/years/whatever

0 1 2 3 4 5



Poisson Process

Examples in the time domain:

o Sneezes in a classroom

o Alpha particles emitted from U 238 

o Email arriving in my inbox

o Accidents at an intersection

o Earthquakes, volcanoes, asteroids, ...



Poisson Process
We can motivate the way a Poisson process is formally 
defined by considering what happens when we randomly 
generate arrivals in a unit interval. Suppose each trial of 
the experiment we generate 5 random numbers in the 
interval [0..1):

We know that the 
probability that a 
particular arrival 
occurs in the 
interval [0.0 .. 0.1) is 
1/10; for [0.2 .. 0.5) 
is 0.3, and for any 
interval [a..b) it is 
(b-a). 

The probability for 
any one arrival is 
equal to the length 
of the interval. 

This is because the 
arrivals are 
randomly and 
uniformly 
distributed in the 
interval [0..1). 



Poisson Process
Now suppose we generate 5 random arrivals in 
[0 .. 1), 10 random arrivals in [0 .. 2), 15 arrivals in 
[0 .. 3), 20 in [0 .. 4) and so on, to infinity....

Since the arrivals are 
independent and distributed 
uniformly, the mean number of 
arrivals in each unit interval 
[0 .. 1), [1 .. 2), [2 .. 3), etc. is still 
5. 

Also, as the sequence gets 
longer, the relationship between 
each interval becomes less and 
less dependent... in the limit, 
each interval's results are 
independent of every other. 



Poisson Process
Formally, we have the following definition: suppose we have discrete events 
occurring through time as just described, and let us define a Counting Random 
Variable

such that
1) The expected value of N[s..t]: 

a) is a fixed constant 𝜆 over any unit interval anywhere in the 
sequence, and

b) is proportional to the length (t – s) of the interval; in particular, for 
any two non-overlapping intervals of the same length, the expected 
number of occurrences in each is the same;

2) The number of arrivals in two non-overlapping intervals is independent; 
and

3) The probability of two events occurring at the same time is 0. 

Then this random process is said to be a Poisson Process. 

0 1 2 3 4 5



Poisson Process

It is also possible that the continuous dimension is distance in space, in 1 
dimension or more than 1.   Examples include:

The occurrence of leaks in an 
undersea pipeline (1D):

Location of trees in a 1 
square mile plot of land:

Location of supernovas 
in a given cubic 
gigaparsec volume of 
space in the last billion 
years:

The important point is that events (discrete) occur along 1 or more (continuous) dimensions.  



Poisson Random Variables (Discrete)
Suppose we have a Poisson Process and we fix the unit time interval we consider 
(say, 1 second or 1 year, etc.), where the mean number of arrivals in a unit 
interval is 𝜆, and then each time we “poke” the random variable X we return 
N[0..1), N[1..2), N[2..3), etc. 

Then we call X a Poisson Random Variable with rate parameter 𝜆, denoted

where

Poi(3)

E(X) = Var(X) = 𝜆



Poisson Random Variables
Examples

Assume that arrivals of email in my Inbox are a Poisson Process with rate 𝜆 = 10 
messages per hour.  Then X ~ Poi(10) returns the random number of emails 
which arrive within any particular hour. 

What is the probability that I get no emails in the next hour? 



Poisson Random Variables
Examples

Assume that arrivals of email in my Inbox are a Poisson Process with rate 𝜆 = 10 
messages per hour.  Then X ~ Poi(10) returns the random number of emails 
which arrive within any particular hour. 

What is the probability that I get exactly 10 emails in the next hour? 



Poisson Random Variables
Examples

Unfortunately there is no way to compute the CDF or ranges except by simply 
adding together all the individual values.  

What is the probability that I get between 5 and 15 emails (inclusive) emails in 
the next hour? 



Optional: The Waiting Time Paradox:

§ https://jakevdp.github.io/blog/2018/09/13/waiting-time-paradox/



Recall: Poisson Random Variables
Suppose we have a Poisson Process and we fix the unit time interval we consider 
(say, 1 second or 1 year, etc.), where the mean number of arrivals in a unit 
interval is 𝜆, and then each time we “poke” the random variable X we return 
N[0..1], N[1..2], N[2..3], etc. 

Then we call X a Poisson Random Variable with rate parameter 𝜆, denoted

where



Interarrival Times of a Poisson Process
Suppose we have a Poisson Process, and instead of counting the number of 
arrivals in each unit interval, we look at the interarrival times, i.e., the amount 
of time between each arrival.  

Intuitively, this is a natural thing to think about: How long before the next 
event?

Let’s define the random variable Y = “the arrival time of the first event.” 

0 1 2 3 4 5

Y



Interarrival Times of a Poisson Process
Suppose we have a Poisson Process, and instead of counting the number of 
arrivals in each unit interval, we look at the interarrival times, i.e., the amount 
of time between each arrival.  

Intuitively, this is a natural thing to think about: How long before the next 
event?

Let’s define the random variable Y = “the arrival time of the first event.” 

In fact, because the arrivals are independent, at any time t, probabilistically 
the Poisson process starts all over again (the events don’t remember the past!), 
so in fact:

Y = “the interarrival time between any two events”

Now the question is: What is the distribution of Y?  
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What is the distribution of Y?  Since 

and the number of arrivals in an interval is proportional to its length, that is, 
E( N[0..2] ) = 2 * E( N[0..1] ), etc.,  then

and so the probability that there are exactly n arrivals by time t is

and

Interarrival Times of a Poisson Process
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What is the distribution of Y?

Now, this is the CDF of the Exponential:

and so if we take the derivative we get the PDF of the 
Exponential:

0 1 2 3 4 5

Y

Interarrival Times of a Poisson Process = Exponential Random Variable

Recall the derivative 
of exponential:

and the chain rule:


